Τι ήταν το Αθάνατο νερό των αρχαίων Ελλήνων;

Τι ήταν το Αθάνατο νερό των αρχαίων Ελλήνων;

Το νερό, πηγή και σύμβολο ζωής, έγινε από τα πανάρχαια χρόνια αντικείμενο λατρείας όλων των πρωτόγονων λαών. Όποιες και αν είναι οι πολιτισµικές τους δοµές, το νερό αποτελεί αστείρευτη πηγή δύναµης και ζωής: καθαρίζει, θεραπεύει, ανανεώνει και διασφαλίζει την αθανασία. Η αθανασία και η αιώνια ζωή ήταν το μεγάλο όνειρο του ανθρώπου από τους αρχαίους χρόνους, η λαχτάρα του αυτή τον έκανε να ψάχνει αλλά και να συνεχίζει μέχρι σήμερα να ερευνά για το ελιξίριο της αθανασίας. Για τους αρχαίους Έλληνες το πιο ονομαστό ελιξίριο ήταν τα νερά της Στυγός. Αλλά και το νερό που δίνανε όρκο οι θεοί.

Το "Ενεργόν Ύδωρ των Αθανάτων"!Τι γνώριζε ο Μέγας Αλέξανδρος;;


Το νερό έχει "μνήμη"!!Αυτό κατέδειξαν έρευνες κορυφαίων επιστημόνων τις τελευταίες δεκαετίες!..
Παράδοξες ιδιότητές του ήταν γνωστές στους Αρχαίους Έλληνες!..
Πηγή:Βιβλίο "Αθάνατο Νερό"-Γεράσιμος Καλογεράκης

Νερό. Η αρχή των πάντων. - BitterBooze

 Ο Κωνσταντίνος Τσατσίρας κάνει μια συναισθηματική προσέγγιση για το νερό και μερικές από τις ιδιότητες του.



Tο νερό είναι μια παράξενη ουσία που εμφανίζει περισσότερες από 80 ασυνήθιστες ιδιότητες, με έναν αριθμό, συμπεριλαμβανομένων και ορισμένων που οι επιστήμονες εξακολουθούν να αγωνίζονται να καταλάβουν. Για παράδειγμα, το νερό μπορεί να υπάρχει και στις τρεις καταστάσεις της ύλης (στερεό, υγρό, αέριο) την ίδια στιγμή. Και οι δυνάμεις στην επιφάνειά του επιτρέπουν στα έντομα να περπατούν με νερό και νερό για να ανέβουν από τις ρίζες στα φύλλα δέντρων και άλλων φυτών. Σε μια άλλη παράξενη στροφή, οι επιστήμονες έχουν προτείνει ότι το νερό μπορεί να μετατραπεί από ένα είδος υγρού σε άλλο σε μια λεγόμενη μετάβαση φάσης "υγρού-υγρού", αλλά είναι αδύνατο να το δοκιμάσετε με τον σημερινό εργαστηριακό εξοπλισμό, επειδή αυτά συμβαίνουν τόσο γρήγορα . Αυτός είναι ο λόγος για τον οποίο οι Kumar και Stanley χρησιμοποίησαν προσομοιώσεις υπολογιστών για να το ελέγξουν.

Διαπίστωσαν ότι όταν ψύξουν υγρό νερό στην προσομοίωση τους, η τάση τους να μειώνουν τη θερμότητα, όπως αναμένεται για ένα συνηθισμένο υγρό. Αλλά, όταν μείωσαν τη θερμοκρασία σε περίπου 54 βαθμούς κάτω από το μηδέν Fahrenheit, το υγρό νερό άρχισε να παράγει θερμότητα ακόμα καλύτερα στην προσομοίωση. Οι μελέτες τους υποδεικνύουν ότι κάτω από αυτή τη θερμοκρασία, το υγρό νερό υφίσταται αιχμηρές αλλά συνεχείς δομικές αλλαγές ενώ η τοπική δομή του υγρού γίνεται εξαιρετικά διατεταγμένη - πάρα πολύ σαν πάγος. Αυτές οι δομικές αλλαγές στο υγρό νερό οδηγούν σε αύξηση της αγωγιμότητας της θερμότητας σε χαμηλότερες θερμοκρασίες. Οι ερευνητές λένε ότι αυτό το εκπληκτικό αποτέλεσμα υποστηρίζει την ιδέα ότι το νερό έχει μια μετάβαση φάσης υγρού-υγρού."  ...

Subject: H2O !!!!

 Subject: H2O !!!

Water has long been known to exhibit many physical properties that distinguish it from other small molecules of comparable mass. Chemists refer to these as the "anomalous" properties of water, but they are by no means mysterious; all are entirely predictable consequences of the way the size and nuclear charge of the oxygen atom conspire to distort the electronic charge clouds of the atoms of other elements when these are chemically bonded to the oxygen.

A covalent chemical bond consists of a pair of electrons shared between two atoms. In the water molecule H 2O, the single electron of each H is shared with one of the six outer-shell electrons of the oxygen, leaving four electrons which are organized into two non-bonding pairs. Thus the oxygen atom is surrounded by four electron pairs that would ordinarily tend to arrange themselves as far from each other as possible in order to minimize repulsions between these clouds of negative charge. This would ordinarly result in a tetrahedral geometry in which the angle between electron pairs (and therefore the H-O-H bond angle) is 109°. However, because the two non-bonding pairs remain closer to the oxygen atom, these exert a stronger repulsion against the two covalent bonding pairs, effectively pushing the two hydrogen atoms closer together. The result is a distorted tetrahedral arrangement in which the H—O—H angle is 104.5°.

Because molecules are smaller than light waves, they cannot be observed directly, and must be "visualized" by alternative means. The two computer-generated images of the H2O molecule shown below come from calculations that model the electron distribution in molecules. The outer envelopes show the effective "surface" of the molecule as defined by the extent of the electron cloud


See the SBU Water Site for more information on the above model

The H2O molecule is electrically neutral, but the positive and negative charges are not distributed uniformly. This is shown clearly by the gradation in color from green to purple in the image at the above right, and in the schematic diagram here. The electronic (negative) charge is concentrated at the oxygen end of the molecule, owing partly to the nonbonding electrons (solid blue circles), and to oxygen's high nuclear charge which exerts stronger attractions on the electrons. This charge displacement constitutes an electric dipole, represented by the arrow at the bottom; you can think of this dipole as the electrical "image" of a water molecule.

As we all learned in school, opposite charges attract, so the partially-positive hydrogen atom on one water molecule is electrostatically attracted to the partially-negative oxygen on a neighboring molecule. This process is called (somewhat misleadingly) hydrogen bonding. Notice that the hydrogen bond (shown by the dashed blue line) is somewhat longer (117 pm) than the covalent O—H bond (99 pm). This means that it is considerably weaker; it is so weak, in fact,that a given hydrogen bond cannot survive for more than a tiny fraction of a second.

How chemists think about water

The nature of liquid water and how the H2O molecules within it are organized and interact are questions that have attracted the interest of chemists for many years. There is probably no liquid that has received more intensive study, and there is now a huge literature on this subject.

The following facts are well established:

  • H2O molecules attract each other through the special type of dipole-dipole interaction known as hydrogen bonding
  • a hydrogen-bonded cluster in which four H2 Os are located at the corners of an imaginary tetrahedron is an especially favorable (low-potential energy) configuration, but...
  • the molecules undergo rapid thermal motions on a time scale of picoseconds (10 –12 second), so the lifetime of any specific clustered configuration will be fleetingly brief.

A variety of techniques including infrared absorption, neutron scattering, and nuclear magnetic resonance have been used to probe the microscopic structure of water. The information garnered from these experiments and from theoretical calculations has led to the development of around twenty "models" that attempt to explain the structure and behavior of water. More recently, computer simulations of various kinds have been employed to explore how well these models are able to predict the observed physical properties of water.

This work has led to a gradual refinement of our views about the structure of liquid water, but it has not produced any definitive answer. There are several reasons for this, but the principal one is that the very concept of "structure" (and of water "clusters") depends on both the time frame and volume under consideration. Thus questions of the following kinds are still open:

  • How do you distinguish the members of a "cluster" from adjacent molecules that are not in that cluster?
  • Since individual hydrogen bonds are continually breaking and re-forming on a picosecond time scale, do water clusters have any meaningful existence over longer periods of time? In other words, clusters are transient, whereas "structure" implies a molecular arrangement that is more enduring. Can we then legitimately use the term "clusters" in describing the structure of water?
  • The possible locations of neighboring molecules around a given H2O are limited by energetic and geometric considerations, thus giving rise to a certain amount of "structure" within any small volume element. It is not clear, however, to what extent these structures interact as the size of the volume element is enlarged. And as mentioned above, to what extent are these structures maintained for periods longer than a few picoseconds?

The view first developed in the 1950's that water is a collection of "flickering clusters" of varying sizes (right) has gradually been abandoned as being unable to account for many of the observed properties of the liquid. The current thinking, influenced greatly by molecular modeling simulations beginning in the 1980s, is that on a very short time scale (less than a picosecond), water is more like a "gel" consisting of a single, huge hydrogen-bonded cluster. On a 10-12-10-9 sec time scale, rotations and other thermal motions cause individual hydrogen bonds to break and re-form in new configurations, inducing ever-changing local discontinuities whose extent and influence depends on the temperature and pressure. It is quite likely that over very small volumes, localized (H2O)n  polymeric clusters may have a fleeting existence, and many theoretical calculations have been made showing that some combinations are more stable than others. While this might prolong their lifetimes, it does not appear that they remain intact long enough to detect as directly observable entities in ordinary bulk water at normal pressures.

Think of liquid water of as a seething mass of H2O molecules in which hydrogen-bonded clusters are continually forming, breaking apart, and re-forming.

Theoretical models suggest that the average cluster may encompass as many as 90 H2O molecules at 0°C, so that very cold water can be thought of as a collection of ever-changing ice-like structures. At 70° C, the average cluster size is probably no greater than about 25.

Prof. Martin Chaplin of the London South Bank University has reviewed much of the existing literature on water clustering, and has recently proposed an icosohedral clustering model in which twenty 14-molecule tetrahedral units form an icosohedron containing a total of 280 H 2O units. This model is consistent with X-ray diffraction data and is able to explain all of the unusual properties of water.

It must be emphasized that no stable clustered unit or arrangement has ever been isolated or identified in pure bulk liquid water. A 2006 report suggests that a simple tetrahedral arrangement is the only long-range structure that persists at time scales of a picosecond or beyond.

Water clusters are of considerable interest as models for the study of water and water surfaces, and many articles on them are published every year. Some notable work reported in 2004 extended our view of water to the femtosecond time scale. The principal finding was that 80 percent of the water molecules are bound in chain-like fashion to only two other molecules at room temperature, thus supporting the prevailing view of a dynamically-changing, disordered water structure.

 

Liquid and solid water

Ice, like all solids, has a well-defined structure; each water molecule is surrounded by four neighboring H 2Os. two of these are hydrogen-bonded to the oxygen atom on the central H2O molecule, and each of the two hydrogen atoms is similarly bonded to another neighboring H2O.

The hydrogen bonds are represented by the dashed lines in this 2-dimensional schematic diagram. In reality, the four bonds from each O atom point toward the four corners of a tetrahedron centered on the O atom. This basic assembly repeats itself in three dimensions to build the ice crystal.

When ice melts to form liquid water, the uniform three-dimensional tetrahedral organization of the solid breaks down as thermal motions disrupt, distort, and occasionally break hydrogen bonds. The methods used to determine the positions of molecules in a solid do not work with liquids, so there is no unambiguous way of determining the detailed structure of water. The illustration here is probably typical of the arrangement of neighbors around any particular H2O molecule, but very little is known about the extent to which an arrangement like this gets propagated to more distant molecules.

Below are three-dimensional views of a typical local structure of liquid water (right) and of ice (left). Notice the greater openness of the ice structure which is necessary to ensure the strongest degree of hydrogen bonding in a uniform, extended crystal lattice. The more crowded and jumbled arrangement in liquid water can be sustained only by the greater amount thermal energy available above the freezing point.


ice


water

 

The anomalous properties of water

Ένας κόσμος χωρίς νερό ....

Ένας κόσμος χωρίς νερό θα ήταν ένας κόσμος χωρίς ζωή. Οι θάλασσες της προϊστορίας υπήρξαν το λίκνο μέσα στο οποίο γεννήθηκε η ζωή, προτού οι διάφορες μορφές της πατήσουν το χώμα της στεριάς.
Η ιστορία του ανθρώπινου πολιτισμού, από την αυγή της μέχρι τις μέρες μας είναι συνυφασμένη με το νερό και σημαδεμένη από αυτό. Οι μεγαλύτεροι πολιτισμοί της αρχαιότητας αναπτύχθηκαν γύρω από το νερό. Η ύπαρξη νερού ήταν κριτήριο για την επιλογή εγκατάστασης ανθρώπων και τη δημιουργία οργανωμένων κοινωνιών και οικισμών. Οι θάλασσες ήταν η οδός της εξερεύνησης και της εξάπλωσης του πολιτισμού σε κάθε γωνιά του πλανήτη. Η δύναμη του νερού ήταν αυτή που κίνησε υδρόμυλους και παράγει σήμερα ηλεκτρική ενέργεια. Όμως αυτή η ίδια δύναμη του νερού ήταν η αιτία καταστροφής πόλεων και πολιτισμών, μεγαλοπρεπής όσο και τραγική υπόμνηση της δύναμης των στοιχείων της φύσης.
Στη γη υπάρχουν περίπου 1.400 εκατομμύρια κυβικά χιλιόμετρα νερού, ενώ το 70% της επιφάνειάς της καλύπτεται από νερό. Το 97% του νερού βρίσκεται στις θάλασσες και είναι ακατάλληλο για άμεση χρήση λόγω της περιεκτικότητάς του σε αλάτι. Όμως και από το 3% που απομένει,

Νερό, αυτό το τεράστιο μυστήριο

Τι συνδέει τους γαλαξίες με μια σταγόνα νερού

Τι συνδέει τους γαλαξίες με μια σταγόνα νερού